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The evolution of a finite-amplitude three-dimensional localized disturbance, having
an initial dipole Gaussian vorticity distribution, embedded in an external unbounded
irrotational plane stagnation flow (U =(Ay, Ax, 0)) is investigated. Using the fluid
impulse integral as a characteristic of such a disturbance, the viscous vorticity
equation is integrated analytically. Accordingly, the fluid impulse associated with
such disturbances decays and grows exponentially along the principal axes x = y and
x = −y, respectively. Numerical simulations, carried out for both linear and nonlinear
disturbances at a Reynolds number of 40, confirm the above predictions. The simu-
lations have also been compared with the solution of the linear viscous vorticity dis-
turbance equation. While the solution predicts the vorticity distribution for the linear
case, it fails to predict the essential characteristics of a nonlinear disturbance associated
with its self-induced movement. Finally, it is shown that the fluid impulse and the
disturbance kinetic energy follow the same trend, i.e. when the fluid impulse increases
with time so does the kinetic energy and vice versa. The correspondence between them
suggests the use of the fluid impulse to predict the stability of a localized disturbance.

1. Introduction
The evolution of a finite-amplitude three-dimensional localized disturbance, having

an initial dipole Gaussian vorticity distribution, embedded in an external irrotational
unbounded plane stagnation flow is the subject of the present study. On one hand, this
problem is practically useful in the study of drop deformation and breakup (e.g. the
famous ‘four roll mill’ experiment by Taylor 1934). On the other hand, the simplicity of
the base flow, the strain matrix of which is constant, makes it easily amenable to many
theoretical studies such as stability analysis (Wilson & Gladwell 1978; Lagnado, Phan-
Thien & Leal 1984; Lyell & Huerre 1985; Farrell 1989; Brattkus & Davis 1991;
Kerr & Dold 1994; Criminale, Jackson & Lasseigne 1994), turbulent flows using
rapid distortion theory where it is assumed that the turbulence has no effect on the
straining flow (e.g. Kevlahan & Hunt 1997), modelling of turbulent mixing layers
(Lin & corcos 1984), and the possibility of getting exact solutions of Navier–Stokes
(Craik & Criminale 1986) and Euler (Kida 1981; Neu 1984) equations.

In the following, the stability of plane stagnation flows is briefly reviewed. The
review is categorized according to the initial disturbance type, either wavelike or
localized in space, and according to the confinement of the base stagnation flow, either
bounded, in which the stagnation points are located at boundaries, or unbounded, in
which free stagnation lines are located in the bulk of the fluid.
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Traditionally the disturbance is assumed to be wavelike. Wilson & Gladwell (1978)
theoretically investigated the stability of two-dimensional viscous bounded stagnation-
point flow with respect to three-dimensional infinitesimal disturbances which are
periodic in the direction perpendicular to the plane of the flow. They found that
these disturbances, in the limit of infinite Reynolds number, are stable. Lyell &
Huerre (1985) considered the same situation but with finite-amplitude disturbances.
Accordingly, two- and three-mode interaction models, based on the least-damped
modes of the linear theory, indicate that three-dimensional fluctuations can be
triggered to grow exponentially above a certain threshold. Brattkus & Davis (1991)
considered the linear stability of a wider class of disturbances and found no solution
with growth rates that are larger than those of Wilson & Gladwell (1978).

The linear stability of two-dimensional unbounded stagnation flow was studied by
Lagnado et al. (1984) as a special case of a wider class of two-dimensional linear flows.
They found that an arbitrary spatially periodic wavelike initial viscous disturbance, at
large times grows exponentially and oriented along the principal axis of the extensional
strain. Kerr & Dold (1994) applied nonlinear numerical analysis to a similar situation
and showed that the vorticity components of three-dimensional disturbances that are
initially perpendicular to the diverging flow will decay, and that the parallel component
of vorticity can grow. Andreotti, Douady & Couder (2001) have demonstrated exper-
imentally that pure straining flow becomes intrinsically unstable. Moreover, near the
critical Reynolds number the transverse velocity profiles of the vortical disturbances
are in agreement with those predicted numerically by Kerr & Dold (1994).

Farrell (1989) considered the linear evolution of two-dimensional disturbances
in two-dimensional unbounded flows. He considered both kinds of disturbances:
an initial plane wave and a disturbance having initially a symmetrical Gaussian
distribution of vorticity. He found that the energy of a single plane wave can grow
whereas the other two-dimensional localized disturbance is stable. It was also found
that spatially asymmetric disturbances can experience an initial transient growth
of energy before approaching a constant value. Criminale et al. (1994) studied the
linear evolution of three-dimensional disturbances in a three-dimensional bounded
stagnation flow. In particular, when considering the energy of a localized disturbance
having an even-function Gaussian distribution of its initial vorticity, it was found
that the planar stagnation-point flow represents a neutrally stable flow whereas the
three-dimensional flow is either stable or unstable.

The main objective of the present paper is to study, using the fluid impulse (FI)
integral, the stability of viscous irrotational unbounded plane stagnation flow with
respect to a finite-amplitude three-dimensional localized disturbance, having an initial
dipole Gaussian vorticity distribution. Moreover, it is intended to show that the fluid
impulse is a suitable characteristic to describe the growth (or decay) of such localized
disturbances. The fluid impulse, p, is defined as:

p =
1

2

∫
x × ω(x) dV, (1.1)

where the bold type indicates vector character, x is the position vector, ω is the
vorticity vector, dV is a volume element and the integral is taken over the whole fluid.
In unbounded three-dimensional flows, the FI is not modified by self-induced motion
(Batchelor 1967) or by viscous effects. Consequently, the evolution of the FI satisfies
a linear equation, even though the fluid motion itself is governed by nonlinear effects.
Although the integral character of the FI does not provide the details of the flow
within the disturbance vortical region, this insensitivity yields, in turn, some universal
properties.
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The rest of the paper is organized as follows. Theoretical aspects concerning the
evolution of the fluid impulse are described in § 2. The numerical procedure and the
computational details are presented in § 3. Section 4 contains a comparison of a linear
analytical solution (Leonard 2000) and the numerical simulations. Also presented are
the results for the evolution of the fluid impulse integral obtained numerically and
compared with the corresponding theoretical prediction for linear and nonlinear cases.
The main results are presented and discussed in § 5 and the main conclusions are
given in § 6.

2. Some theoretical considerations
Here we follow previous studies in which the fluid impulse was used to describe

the evolution of vortical structures. Roberts (1972) applied the FI to an inviscid flow
consisting of a set of small interacting circular vortex rings separated by a large
distance relative to their dimensions, whereas Levinski & Cohen (1995) used it to
follow the evolution of a localized disturbance in inviscid shear flows. In the following
we apply a similar model to the particular case in which a finite-amplitude viscous
three-dimensional localized disturbance is embedded in an unbounded two-
dimensional irrotational stagnation-point flow for which the velocity field is
U = (Ay, Ax, 0), where (x, y, z) are the coordinates in the Cartesian system and
A is a positive constant.† The resultant disturbance vorticity equation is

∂ω

∂t
+ (U · ∇)ω − (ω · ∇)U + (u · ∇)ω − (ω · ∇)u − ν�ω = 0, (2.1)

where the disturbance vorticity ω and velocity u are related by ω = ∇×u. It is assumed
that ω(t = 0) is localized in space. In order to study the development of the initial
localized vorticity disturbance, we follow the evolution of its FI. Using (2.1) and (1.1),
we obtain

d p
dt

= −1

2
lim

R1→∞

∫
|x|�R1

x × [(U · ∇)ω − (ω · ∇)U + (u · ∇)ω − (ω · ∇)u − ν�ω] dV, (2.2)

where, for convenience, a spherical volume with a radius R1 → ∞ is used.
The first four integrals on the right-hand side of (2.2) are similar to those evaluated

in Appendix A of Levinski & Cohen (1995). By transformation to surface integrals
the nonlinear terms as well as the viscous term∫

|x|�R1

εijkxj

∂2ωk

∂xl∂xl

dV = εijk

∫
|x|�R1

{
∂2(ωkxj )

∂xl∂xl

− 2
∂ωk

∂xj

}
dV

= εijk

{∮
|x|=R1

∂(ωkxj )

∂xl

nl dS − 2

∮
|x|=R1

ωknj dS

}
.

vanish in the evolution of the FI. So the only contribution to the evolution of the
FI is from the first two integrals. Consequently, for U = (Ay, Ax, 0) equation (2.2)
becomes‡

dpx

dt
= −pyA,

dpy

dt
= −pxA,

dpz

dt
= 0. (2.3)

† It should be noted the conventional definition of an irrotational stagnation-point flow which is
given by U = (Ax, −Ay, 0) is merely a pure rotation of our coordinate system by 45 ◦. The reason
for this is to extend the principal axes in the computational domain.

‡ This equation can also be derived from equation 12 on p. 50 of Saffman (1992) by excluding
body forces and dividing the velocity and vorticity fields into base and disturbance fields.
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Figure 1. A schematic of the computational domain including the base flow and the initial
Gaussian disturbance.

If x1 and x2 are the principle axes along x = y and x = −y, respectively, the evolution
of the corresponding components of the fluid impulse (px1

and px2
) is

px1
= px10

e−At , px2
= px20

eAt , pz = 0, (2.4)

where subscript 0 denotes value at time t =0 and pz0 = 0. It is noted here that in
terms of the regular coordinates, the vectors, px1

= py + px and px2
= py − px .

3. Numerical procedure
The equations of motion are solved numerically using the finite volume solver

FLUENT. First, the steady base flow (U = (Ay, Ax, 0)) is obtained and then a localized
disturbance is superimposed onto the base flow at time t = 0, the evolution of which
is then monitored. The initial localized disturbance has a dipole vorticity distribution
and is similar to that used by Suponitsky, Cohen & Bar-Yoseph (2005):

ω = − p × ∇F, F =
(
π1/2δ

)−3
exp

(
− rs

2/δ2
)
, (3.1)

where ω is the vorticity vector and p defines its space orientation given by (1.1). F

in (3.1) is normalized such that
∫

V
F dV = 1, rs is a spherical radial coordinate and

δ is a representative length scale of the disturbance. All lengths are normalized by
δ, i.e. X = x/δ, Y = y/δ and Z = z/δ, and time by A as T = tA. The magnitude of
the disturbance is defined as ε =ωmax/A, where ωmax is the maximum magnitude of
vorticity of the initial disturbance.

The computational domain along with the base velocity profile at z = 0 and the
initial Gaussian disturbance ( p = p0) placed at the origin are schematically shown in
figure 1. The extent of the computational domain is 40δ × 40δ × 20δ in the x-, y-
and z-directions, respectively. The simulation is done with half a million grid points.
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Figure 2. Iso-surfaces of the vorticity magnitude (‖ ω ‖ /ωmax = 0.7) and the associated
vorticity vectors at time T = 2.0 for ε = 0.015.

A further increase in the number of grid points and/or a further extension of the
computational domain had no significant effect on the results. The distribution of
the grid points is denser in the region surrounding the disturbance, having about
5–6 volume elements per disturbance length scale δ in all directions. The distance
separating the neighbouring grid points increases towards the boundary of the domain.
The base flow is obtained by using appropriate boundary conditions of velocity inlet
and gauge pressure outlet in the X- and Y -directions. Owing to the symmetry of the
equations and the initial disturbance, the flow field is symmetric about the z-axis.

4. Results
4.1. The evolution of a small-amplitude disturbance (ε � 1)

4.1.1. Comparison between Leonard’s analytical solution and the numerical results

A typical structure for a linear disturbance (ε =0.015) initially placed horizontally
(px = 0, py = py0 and pz = 0) is shown in figure 2 at T =2.0. The structure seen is that
of a counter-rotating vortex pair (CVP), which is stretched along the direction of the
principal axis x = y.

A comparison between the analytical, viscous and inviscid solutions of the three-
dimensional linearized vorticity equation obtained by Leonard (2000) for an initial
Gaussian vortex in an irrotational flow, and the numerical solution of the full Navier–
stokes equations for a relatively small amplitude (ε =0.015) is shown in figure 3. The
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Figure 3. Comparison between the linear theory (Leonard 2000) and numerical results
(ε = 0.015). Temporal evolution of vorticity magnitude of an initially Gaussian disturbance,
(a) along X = Y , (b) along X = − Y and (c) along Z-axis.

analytical solution of Leonard (2000) for the vorticity field is

ω(x, t) = ∇ ×
{

a(t)δ3(detM)1/2 exp[−(F−1MFT−1) : (x)(x)]
}
, (4.1)

where F is the deformation tensor, M is the tensor that includes viscous effects and a
is the vector related to the fluid impulse. The distributions of the vorticity magnitude
along the principal axes X = Y , X = − Y and along the Z-axis are shown in figure 3
(a, b, c), respectively. The viscous analytical solution for Re ≡ Aδ2/ν = 40, where ν is
the kinematic viscosity of the fluid, is shown by the solid lines, the inviscid analytical
solution by the dashed lines and the corresponding numerical viscous solution is
shown by symbols.

It is evident that the viscous numerical solution follows closely the analytical
solution along the (X = −Y )-axis during the entire evolution (up to T = 2). The
numerical solutions for the magnitude of vorticity along the (X = Y )- and Z-axes
also follow the analytical ones although they are somewhat smaller. With time the
difference between the two increases. Based on the results of additional simulations
we attribute these deviations to the presence of a small nonlinearity. Very low-
amplitude disturbances could not be studied because of numerical errors, associated
with obtaining a pure irrotational base flow. While the shape of the vorticity magnitude
distribution is preserved well by the inviscid solutions, its magnitude is severely
overestimated. Finally it is observed that the vorticity magnitude along the principal
axes reduces with time while that along the Z-axis increases.

4.1.2. The evolution of the fluid impulse

To verify the theoretical prediction (2.4), the fluid impulse is calculated from
numerical data and compared with the theoretical solution. In the present case
the far-field vorticity always vanishes and therefore the fluid impulse integral is
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Figure 4. py integrated within a spherical volume (s) of radius R and a cylindrical volume
(c) with axis length L as a function of R and L, respectively, where [px0

= 0, py0
=

4 × 10−12, pz0
= 0].

absolutely convergent. We first calculate it with the volume of integration increasing
spherically from its centre at the origin. Since the numerically obtained base flow is
not completely irrotational (as some small vorticity caused by the finite geometry and
the boundary conditions is still present at the edges of the computational domain), the
integral is also calculated within a cylindrical region. The generators of the cylinder
are parallel to the line X = Y with centre at the origin. This avoids the edges of
the computational domain during the integration whereas the disturbance and its
surrounding are included. The value of the integral py as a function of R and L is
shown in figure 4 (with ε = 0.015 and Re = 40), where R and L are the normalized
(by their maximum dimensional values) sphere radius and cylinder height. It can be
seen that the integral converges smoothly for the cylindrical domain but not for the
spherical one. Therefore, the cylindrical domain is used for all further evaluation of
the fluid impulse.

The solution for px1
and px2

, normalized by | p0|, are obtained from (2.4) subject to
the initial conditions specified above (px = 0, py = py0

and pz = 0). It is compared
with the results of the numerical simulation in figure 5. The numerical solution for
the linear case (ε = 0.015) is shown with symbols (px1

with an open square and px2

with a solid square) and the analytical prediction by lines (px1
with dashed and px2

with solid). The comparison is made only till T = 2 because beyond this time the
edges of the vortical structure are extended outside the computational domain. The
numerical results follow closely the theoretical predictions. Both px1

and px2
decrease

and increase exponentially with the same exponents A.
For times much greater than (1/A) and for a given orientation of the initial vortex

in the (X, Y )-plane, the exponentially growing components (px2
) become dominant

and, consequently, the long-time orientation of the vortical structure is along the
principal axis X = Y . The confirmation of this prediction can be deduced from the
long-time orientation of the vortex pair in figure 2. Finally, it should be noted that
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Figure 5. Comparison between the prediction of (2.4) and the numerical results (symbols)
for linear (ε = 0.015) and nonlinear (ε = 7.5) evolution of the normalized fluid impulse.
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Figure 6. Comparison between the linear theory (Leonard 2000) and numerical results for
ε = 0.015, 0.1, 1.0, 7.5 at T = 1. Vorticity magnitude distribution along X = − Y (X2).

according to (2.4), pz should not change. This is indeed the situation for the particular
case solved numerically and discussed above for which pz remains zero.

4.2. The evolution of a large-amplitude disturbance (ε = 7.5)

The results of the numerical simulation for the nonlinear case (ε =7.5) are compared
with the linear analytical solution of Leonard (2000). Figure 6 shows the normalized
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Figure 7. Iso-surfaces of the vorticity magnitude (‖ ω ‖ /ωmax = 0.7) and the associated
vorticity vectors at time T = 2.0 for ε =7.5.

vorticity magnitude (ω/(ωmax(T = 1)) plotted along X = −Y (X2) for various values
of ε, ranging from the linear case of ε = 0.015 to ε = 7.5 at time T =1. The typical
character of the nonlinear nature of the disturbance is seen during the symmetry
breaking which happens as the value of ε is increased beyond 0.1. Even at ε = 0.1
(at X2 = 0) the nonlinear behaviour associated with the self-induced velocity of the
disturbance can be noticed, where there is a slight ‘lift-up’ of the disturbance. The
lift-up effect is most noticeable along X2, as this is the main direction of the self-
induced velocity. With the increase in ε, this lift-up has a pronounced effect, eventually
causing the vortex structure to move along X2, breaking the symmetry of its associated
vorticity distribution. A three-dimensional view of the structure is shown in figure 7.
The structure is very similar to the ‘linear’ one, having a pair of counter-rotating
vortices stretched along the X1-direction. The shift of the disturbance from its origin
(due to its self-induced motion) and the presence of asymmetry in the numerical
solution (figure 6) are clear indications of nonlinear effects.

The predictions of the temporal evolution of the fluid impulse are compared with
numerical simulations for initial conditions identical to the ones used for the linear
case except that initial amplitude is ε = 7.5. The comparison is shown in figure 5.
As in the linear case, the numerical results for the nonlinear case follow closely the
theoretical prediction.
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, (b) case (b) p0 = px20
.

4.3. Evolution of highly nonlinear (ε = 50) Gaussian disturbances initially
along the principal axes

In this section we examine the predictions of (2.4) for two cases in which the initial
vortex is highly nonlinear (ε = 50) and its initial FI is along the principal axis X1 (case
a), and along X2 (case b). The temporal evolution of cases (a) and (b) is presented in
figures 8(a) and 8(b), respectively, by the iso-surfaces of the vorticity magnitude (the
values of which are shown for each time instance). Also presented are the associated
vorticity vectors, indicated by the black arrows. The evolution of the fluid impulse
corresponding to cases (a) and (b) is shown in figure 9(a) and 9(b), respectively.
The theoretical predictions (lines) agree well with the numerical results (symbols).
Accordingly, the fluid impulse decays and grows exponentially along X1 and X2,
respectively.

In figure 8(a) the induced velocity (which initially is very high) is in the same
direction as the base flow (along X1). Consequently the structure moves rapidly away
from its origin. This motion is depicted in figure 10, which shows the movement
of the centre of the vortex structure (CVS) along X1 by filled symbols. The CVS
(Xcvsi

(t)) is defined as the first moment of enstrophy divided by the total enstrophy:
Xcvsi

(t) = [
∫

V
‖ω(t)‖2xidV ]/W (t), where W (t) is the enstrophy given by W (t) =∫

V
‖ω(t)‖2dV. The structure is stretched rapidly (until it is split into two) whereas the

direction of its associated vorticity remains along its circumference. Consequently, the
area normal to the vorticity vectors increases and therefore the vorticity magnitude
decreases. As the vorticity in the cross-section normal to X1 decreases rapidly while
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and �, case (b)
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.

the size of the cross-section decreases only a little, px1
= 1

2

∫
(x2ω3 − x3ω2)dV should

decrease. The decrease in vorticity is accompanied by an almost exponential decrease
in the enstrophy (figure 12 below).

In figure 8(b), the initial induced velocity is in the direction of X2, opposite to the
base flow (−X2). Owing to its high initial induced velocity the structure at initial times
moves rapidly along X2 (shown in figure 10 by open symbols). As it moves upward,
the size of the dipole vortex as well as its core increases rapidly. The increase of
the vortex size is evident from figure 11 where the temporal growth of the spanwise
distance between the two vorticity maxima (D) is plotted. Consequently, the induced
velocity is reduced drastically, and by T ≈ 2 it equals to that of the opposing base
flow. This results in the stopping of the structure and its slow movement back towards
its original position (see figure 10) as its dimensions continue to increase. Despite its
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.
Numerical simulations for ε = 50 (symbols) and KE using inviscid linear theory (solid lines).

stretching during the upward movement, the vorticity decreases a little due to the
increase in core size. As the vortex moves backward it transforms into a CVP and its
movement is slowed down. This is due to the fact that the distance D increases slowly
and the induced velocity decreases as ≈1/D. During this time ω1 continues to increase
due to vortex stretching. Thus, the evolved structure is that of a CVP aligned with
X1. It is interesting to note that when the spacing between its legs, D, is expressed in
terms of wall units, it is about 45 (at T =5) which is close to the distance observed
between the legs of CVPs commonly occurring in turbulent boundary layers. During
the whole duration the enstrophy continues to increase at a near exponential rate as
seen in figure 12(b). The growth of FI during the upward movement is mainly due to
the growth of the vortex dimensions whereas at subsequent times it is due to vortex
stretching.

5. Discussion
In this paper we have examined the evolution of a finite-amplitude three-

dimensional localized disturbance, having an initial dipole Gaussian vorticity distri-
bution, embedded in an external irrotational unbounded plane stagnation flow. It has
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been shown that independent of its initial amplitude, the vortex structure is stretched
along X1 and compressed along X2. This is in agreement with the previous study of
Marshal & Grant (1994) where they showed numerically that a vortex ring subjected
to an external straining flow elongates in the direction of stretching of this flow. Similar
results obtained from a viscous linear stability analysis were also reported by Lagnado
et al. (1984) in which the vorticity component ω1 along the principle axis of extensional
strain increases at an exponential rate due to vortex line stretching. Kida (1981) for a
two-dimensional elliptic vortex in two-dimensional stagnation flow and Neu (1984),
as a special case of three-dimensional stagnation flow, solved the Euler equation
exactly and found that when the strain is very strong, the vortex is always elongated
infinitely in the direction of strain. This general behaviour is similar to what we have
observed in our case with a three-dimensional vortex in a two-dimensional stagnation
flow.

For the two-dimensional stagnation flow considered in the present study, the
base flow, when transformed along the principal axes, becomes U = (Ax1, −Ax2, 0).
The evolution of an inviscid small-amplitude vortical disturbance is then given by
Dω1/Dt = ω1A, and Dω2/Dt = − ω2A, and Dω3/Dt = 0 where D/Dt is the material
derivative. Thus, the basic mechanism is that ω1 increases exponentially along X1

due to stretching while ω2 decays at the same rate along X2 due to compression.
This mechanism can be used to give a qualitative picture of the evolution of the fluid
impulse in the X1 (px1

= 1
2

∫
(x2ω3 − x3ω2)dV ) and X2 (px2

= 1
2

∫
(x3ω1 − x1ω3) dV )

directions for the ‘linear case’. Apart from the exponential evolution of the vorticity
of a material element, a similar growth rate in the position of such an element (eAt

in X1 and e−At in X2), due to the base flow, contributes to the evolution of the fluid
impulse. It should be noted that for the linear case, when only px10

is present, px1

would decrease due to the decrease in both X2 and ω2, whereas for the case when
only px20

is present, the increase would be due to an increase in both X1 and ω1. For
the nonlinear cases with viscous effects (figure 8 and figure 9) these arguments are
no longer valid mainly due to the self-induced motion, as was explained in detail in
§ 4.3, even though there are some qualitative similarities.

The growth of the fluid impulse is composed of the growth of the disturbance
amplitude as well as its geometrical scale. As it is difficult to distinguish between
their individual contributions: a direct comparison with other instability criteria is
not straightforward. In the following we attempt to correlate the growth (and decay)
of the fluid impulse with that of the disturbance kinetic energy (KE). The KE of a
disturbance is commonly defined as KE= 1

2

∫
u · u dV, also called the self-energy of

the vortex structure (Leonard 2000). The KE for the highly nonlinear cases (ε = 50)
presented in § 4.3 is evaluated from the numerical results and plotted along with
the prediction of the linear inviscid theory in figure 12(a) and 12(b) corresponding
to cases (a) and (b), respectively. Accordingly, the disturbance KE is calculated by
converting (4.1) into Fourier space and numerically integrating it for the inviscid case.
In this figure the calculated KE (presented as ln KE) is shown by solid lines and the
numerical results by symbols and both are normalized by their initial values. It can
be seen that the numerical results have the same trends as the theoretical curves, i.e.
decrease and increase monotonically for cases (a) and (b), respectively. In both cases
the inviscid linear theory over-predicts the numerical results, indicating that viscosity
and nonlinearity have a stabilizing effect. All results seem to follow an exponential
decay in case (a) and growth in case (b). Comparing it with the growth of the fluid
impulse, the KE for these nonlinear disturbances decreases when the fluid impulse
decreases (figure 9a) and increases when the fluid impulse increases (figure 9b). The
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correspondence between them, as well as with the enstrophy, suggests the use of the
fluid impulse to predict the stability of a localized disturbance.

In this respect, the studies by Farrell (1989) and Criminale et al. (1994) should
be mentioned. They assumed the initial disturbances to have an even-function
distribution of vorticity (monopole) and therefore, unlike for the dipole structure
considered in the present case, the initial fluid impulse was identically zero. This may
explain why in those studies the flow was found to be neutrally stable when an energy
criterion was used.

Finally, we would like to draw attention to the similarity between the growth of
the CVP along the principal axis X1 in the present case and the growth of ‘rib’
vortices observed in the braid region of a turbulent mixing layer (Bernal & Roshko
1986), in between two spanwise (Kelvin–Helmholtz) rollers in plane stagnation flow.
In this case, the initial growth of the vortex pairs is along the direction connecting
the bottom of the upstream roller and the top of the downstream one.

6. Conclusions
The components of the fluid impulse along the principal axes X1 (X = Y) and X2

(X = −Y), of a finite-amplitude localized disturbance in an irrotational plane stagna-
tion flow, having an initial dipole Gaussian vorticity distribution, are respectively,
predicted to decay and grow with time. The results are confirmed numerically for
both linear and nonlinear disturbances.

The fluid impulse is found to be a suitable characteristic describing the temporal
evolution of localized vortical disturbances. Furthermore, the correspondence between
the growth/decay trends of the self-energy of the vortex structure (KE) and its
associated fluid impulse suggests that the growth of the fluid impulse can be used as
an instability criterion for such disturbances.

The solution of the linear viscous vorticity disturbance equation (Leonard 2000)
predicts well the vorticity distribution for the linear case, but fails to predict the
essential characteristics of a nonlinear disturbance associated with its self-induced
movement. In both linear and nonlinear cases, the final structure is that of a counter-
rotating vortex stretched along the principal axis X =Y , in accordance with the fluid
impulse prediction.

This research has been supported by the Israeli Science Foundation under Grant
no. 412/00.
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